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A standardized effect is a difference or change in a mean divided by an appropriate be-
tween-subject standard deviation (SD). Standardization is useful for assessing effect 
magnitude when the dependent variable has no known relationship with clinical or practi-
cal outcomes. Accounting for the uncertainty in the standardized effect resulting from 
uncertainty in the standardizing SD is a difficult problem, which I have solved here by 
deriving an approximate t distribution for the standardized effect. Simulations with a 
spreadsheet show that this distribution provides acceptable coverage of compatibility 
(confidence) intervals and error rates for magnitude-based decisions with sample sizes 
down to 10 for the mean and standardizing standard deviation. The spreadsheet can also 
be used to adjust compatibility limits of standardized effects that were previously derived 
without accounting for uncertainty in the standardizing SD. The spreadsheet shows that 
such adjustment is unnecessary when the sample size of the standardizing SD is at least 
30. KEYWORDS: confidence, inference, probability, sample, simulation, t distribution.  
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Update March 2023. In a recent article, Lin 
and Aloe (2021) referred to previous authors 
who devised approximations for the standard 
error of a standardized effect. It is evident that 
these can be derived by a first order approxima-
tion with calculus, as follows. The standardized 
mean effect SME = ∆/SD, where ∆ is the dif-
ference or change in the means and SD is the 
standardizing standard deviation. Therefore, 
using first-order calculus, δSME = δ∆/SD – 
(∆/SD2).δSD. If δ represents the standard error, 
then the first term is the contribution to the 
standard error in the SMD arising from the 
standard error in the mean, and the second term 
is the contribution arising from the standard 
error in the standardizing standard deviation. 
The standard error of an SD is given by δSD = 
SD/√(2DF), where DF is the degrees of free-
dom of the standardizing SD (this Excel simu-
lation checks this formula). Assuming these 
two terms are independent, the square of the 
standard error in the SME is given by (δ∆/SD)2 
+ [(∆/SD2).SD/√(2DF)]2 = (δ∆/SD)2 + 
(∆/SD)2/(2DF) = (δ∆/SD)2 + SME2/(2DF). This 
formula, and the formula for its degrees of 
freedom (given by the Satterthwaite approxima-
tion) are the same as those I arrived at with my 
simulations. However, my assertion that "such 

adjustment is unnecessary when the sample size 
of the standardizing SD is at least 30" is not 
correct; with a highly reliable dependent varia-
ble in a crossover or controlled trial, (δ∆/SD)2 
could be comparable to or even smaller than 
SME2/(2DF), irrespective of sample size, if the 
SD is provided by the sample. 

Lin L, Aloe AM. (2021). Evaluation of vari-
ous estimators for standardized mean differ-
ence in meta‐analysis. Statistics in Medicine 
40, 403-426.  

A difference or change in a mean divided by 
an appropriate between-subject standard devia-
tion (SD) is a dimensionless standardized statis-
tic sometimes known as the effect size or Co-
hen's d. Standardization is a useful approach to 
assessing magnitude of an effect, when the 
dependent variable providing the difference or 
change in the mean is approximately normally 
distributed, and when there is no known rela-
tionship between the variable and health, wealth 
or performance that would allow assessment of 
meaningful effect magnitudes. For an example, 
consider a psychometric variable, agreeable-
ness. Until researchers find a relationship of 
this variable with morbidity, mortality, success 
at work (e.g., chance of promotion) or at home 
(e.g., risk of divorce), standardization allows 
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you to determine that an individual who is 2-4 
SD below the mean has a very large level of 
disagreeableness and would need a treatment 
with a very large positive effect to bring him or 
her up to the mean value, according to the mag-
nitude thresholds for standardized effects: <0.2, 
trivial; 0.2-0.6, small; 0.6-1.2, moderate; 1.2-
2.0, large; 2.0-4.0, very large; >4.0, huge 
(Hopkins et al., 2009).  

The spreadsheets for analyzing differences 
and changes in means at this site have long 
suffered from failure to account for uncertainty 
in the standard deviation used to assess magni-
tude via standardization. I once thought the 
non-central t statistic was needed, but more 
recently I realized that the non-central t applies 
only to the special case of standardized effects 
where the standardizing SD can be expressed as 
a factor of the standard error of the difference 
or change in the mean. The non-central t would 
therefore not apply either to standardizing the 
difference in changes of the mean in controlled 
trials (where the pretest provides the standardiz-
ing SD) or to standardizing in any design with 
an SD from another sample. I also thought that 
dividing a mean by a standard deviation would 
produce a statistic with an unfathomable sam-
pling distribution, such that compatibility (for-
merly confidence) limits and magnitude-based 
decisions (MBD; formerly magnitude-based 
inference) could be derived only by bootstrap-
ping or full Bayesian analysis. Cumming and 
Finch (2001) had also reached some of these 
conclusions. Updating the Sportscience spread-
sheets with bootstrapped compatibility limits 
and MBD was not a realistically implementable 
option. What to do? 

It occurred to me that the central limit theo-
rem might be relied upon to give the usual t 
distribution for the standardized effect, perhaps 
even with sample sizes as low as 10, which is 
what sport scientists sometimes have to contend 
with. The breakthrough in deriving the t distri-
bution was to realize that dividing by an SD is 
the same as multiplying by 1/SD. The standard 
error (SE) of the sampling distribution of the 
product could then be estimated from the SE of 
the mean and the SE of 1/SD, if an expression 
could be found for the latter.  

Simulation came to the rescue. In the accom-
panying first spreadsheet, I have used simula-
tion to show that the fractional SE of 1/SD is 
given quite accurately by √(1/(2(DF-2)), where 
DF is the degrees of freedom of the SD. I ar-

rived at this formula by starting with the frac-
tional SD for the SD itself, which is given by 
√(1/(2(DF)). When I found that this formula 
underestimated the SE of 1/SD for small sam-
ple sizes, it was a simple matter to reduce the 
DF until the formula estimated the SE derived 
from simulated samples. 

I then had to derive a formula for combining 
the SE of the product of two independent statis-
tics. This formula can be derived by statistical 
first principles, but I checked it with another 
spreadsheet. Next I used the resulting formula 
in a spreadsheet that simulates 10,000 studies of 
a standardized effect derived from a sample for 
the mean and another sample for the standardiz-
ing SD. In another spreadsheet I did the simula-
tions using the population SD for the standard-
izing. Both spreadsheets are included in a single 
workbook (28 MB). I then varied values for the 
mean, the SD of the mean, the standardizing 
SD, and both sample sizes. I found that using 
the formula for the fractional SE of the SD 
rather than what I had derived for 1/SD gave 
90% compatibility intervals with good cover-
age: the intervals included the true standardized 
effect at worst ~89% of the time (i.e., what I 
call the Type-0 error rate in the spreadsheet was 
at most ~11%). For the smallest sample sizes I 
investigated (10), the coverage was sometimes 
too conservative: an error rate down to ~6%. I 
therefore made the SE of the standardized effect 
slightly smaller by removing one of the terms in 
its formula, then included this simpler formula 
in the spreadsheet to check on the resulting 
error rates. The highest error rates of ~11% 
increased only slightly, while the lowest rates 
rose to ~8%. I considered this simpler formula 
to be a good compromise, and it made the job 
of updating all the relevant spreadsheets at 
Sportscience a little easier. 

Although the compatibility interval for the 
standardized effect has acceptable coverage of 
the true value for small sample sizes, the proba-
bilities of the magnitude of the true value in 
MBD are based on the assumption of an under-
lying t distribution. The simulation spreadsheet 
allows investigation of this issue visually via a 
histogram of the sampling distribution of stand-
ardized effects and a Q-Q plot for normality. 
Non-normality is obvious in these figures when 
the sample size for the standardizing SD is 10 
or even 20, especially when the mean standard-
ized difference or change is substantial (greater 
than 0.20 or less than -0.20). Non-normality is 
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also apparent in divergence of the 5th and 95th 
percentiles of the sampling distribution of the 
effect standardized with the sample SD from 
those standardized with the population SD. The 
assumption of normality is therefore visibly 
violated with small sample sizes for the stand-
ardizing SD. 

A reasonable approach to determining 
whether this non-normality renders the MBD 
probabilities untrustworthy is to determine the 
MBD error rates with the smallest sample sizes 
that sport scientists should ever use (10 for the 
mean and 10 for the standardizing SD), and 
compare the error rates with those in the second 
spreadsheet in the workbook, where the popula-
tion SD is used to standardize and the sampling 
distribution is normal.  By inserting appropriate 
values for the SD of the mean, I chose two 
scenarios: an effectively suboptimal sample size 
for the mean (one-fifth of the optimal, which 
would give 90% compatibility limits of ±0.48 
rather than the optimal of ±0.20); and a supra-

optimal sample size (approximately three times 
the optimal, which would give compatibility 
limits of ±0.12). These two scenarios corre-
spond approximately to the sample sizes of 
10+10 and 144+144 for the simulated con-
trolled trials in the study of Hopkins and Bat-
terham (2016), where the optimal sample size 
was 50+50. (I established the correspondence 
for a mean difference or change of zero.) Figure 
1 shows the resulting MBD error rates. 

The error rates for the standardizing sample 
size of 10 are remarkably similar to those for 
the population SD when the sample size for the 
mean is suboptimal. It is only with the supra-
optimal sample size that the non-clinical Type-
2 rate increases substantially and could be of 
concern for marginally substantial effects (10% 
rather than 5%). Given the narrow compatibility 
intervals with supra-optimal sample sizes, the 
Type-2 errors would not be associated with 
misapprehension about the true magnitude. 

 

 
Figure 1. Type-1 and Type-2 error rates for non-clinical and clinical magnitude-based deci-
sions about standardized magnitudes when the sample size for the mean is suboptimal (one-
fifth optimal) and supra-optimal (three times optimal) and when the sample size (SS) of the 
standardizing SD is either 10 or infinity (∞, i.e., the population SD). The colored zones indi-
cate harmful or substantially negative effects (purple), trivial effects (green) and beneficial or 
substantially positive effects (orange). The dashed horizontal lines indicate an error rate of 
5%. 

 
The simulation spreadsheet can also be used 

to make adjustments to compatibility limits for 
a standardized effect that was derived previous-

ly with a small sample size for the standardiz-
ing SD. Make the sample size for the standard-
izing standard deviation in the spreadsheet the 
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same as that in the previous study. Make the 
sample size for the mean difference or change 
in the spreadsheet approximately the same as 
that in the previous study. (If the previous study 
was a controlled trial, the sample size is near 
enough to the sum of the sample sizes in the 
two groups that provided the difference in the 
change in the means.) Next, make the mean 
difference or change in the spreadsheet a value 
that gives the mean standardized effect in the 
previous study.  Now try different values of the 
standard deviation of the mean in the spread-
sheet until you get the same mean compatibility 
limits derived with the population SD as those 
in the previous study. The mean compatibility 
limits that you now see in the spreadsheet com-
ing from the sample standardizing standard 
deviation are a reasonable estimate of what the 
compatibility limits should have been, if the 
previous study had been analyzed appropriate-
ly. Use the upper and lower confidence limits to 
make a non-clinical or clinical magnitude-based 
decision. 

Finally, I have compared the compatibility 
limits derived from the sampling distributions 
of the mean effect standardized with the sample 
SD and with the population SD to address the 
question of the minimum sample size for the 
standardizing SD that allows the uncertainty in 
the SD to be ignored. The first surprising find-
ing is that for a population mean of zero, the 
compatibility limits are negligibly wider (<5%) 
with a standardizing sample size of 10 than 
those with the population SD, regardless of the 
precision of the mean (varied by inserting dif-
ferent values of the population SD of the mean). 
The compatibility limits start to diverge when 
the population mean becomes small-moderate. 
Understandably, the divergence is less marked 
for greater uncertainty in the mean, because the 
standardizing SD contributes relatively less 
uncertainty to the standardized effect. 

With a sample size of 30 for the standardiz-
ing SD and with overall uncertainty in the 
standardized effect approximately equal to the 
mean (giving effects that are clear but ap-
proaching unclear), there is negligible differ-
ence between the compatibility limits using the 
sample vs population SD to standardize.  The 
limits start to diverge when the overall uncer-
tainty in the standardized mean is somewhat 
less than the standardized mean itself (e.g., 
mean standardized effect 1.00; 90%CL 0.69 to 

1.37 using the sample SD; 0.74 to 1.26 using 
the population SD), but these effects would all 
be very clear, so there would be little concern 
about ignoring the uncertainty in the SD based 
on a sample of 30 or more. 

Several statistics other than differences and 
changes in means can be standardized: individ-
ual differences from the mean (e.g., the value of 
disagreeableness in the opening paragraph), 
individual changes (e.g., of an athlete's test 
score), and the standard deviation summarizing 
additional individual differences or changes in 
one group compared with a reference or control 
group (e.g., individual responses to a treat-
ment). Compatibility limits of a standardized 
individual difference or change will depend on 
the error of measurement of the variable and 
could be derived by using the simulation 
spreadsheet to perform parametric bootstrap-
ping. The uncertainty in the SD summarizing 
individual differences or changes is much 
greater than that of the mean difference or 
change (Hopkins, 2018), so it seems reasonable 
to neglect the contribution of uncertainty in the 
standardizing SD for this statistic, especially 
given that the overall sample size in a con-
trolled trial needs to be at least 40 for reasona-
ble accuracy of the compatibility limits of the 
SD representing individual responses. 

In conclusion, researchers can use an approx-
imate t distribution to provide trustworthy com-
patibility intervals and decisions about the 
magnitudes of standardized differences and 
changes in means, even when the sample size 
for the standardizing SD is unavoidably as low 
as 10. The appendix provides formulae for the 
parameters of the t distribution, and the spread-
sheets for analyzing differences and changes in 
means at the Sportscience site have now been 
updated with these formulae. When the sample 
size of the standardizing SD is at least 30, ig-
noring the uncertainty in the SD will not ad-
versely affect decisions about magnitudes of 
standardized effects.  
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Appendix 
Here are the parameters of the approximate t 
distribution for a standardized effect. 

The mean, with the Becker (1988) adjustment 
to remove small-sample bias:  
(∆/SD)(1-3/(4DFSD-1)),  
where ∆ is the mean difference or change, SD is 
the standardizing standard deviation, and DFSD 
is the degrees of freedom of the SD. 

The standard error, Becker-adjusted: 
 √[SE2+∆2/DFSD/2](1-3/(4DFSD-1))/SD, 
where SE is the standard error of the mean 
effect. To give overall better coverage of the 
compatibility interval, the term omitted from 
the sum of the variances was +SE2/DFSD/2. 

The degrees of freedom, using the Satterth-
waite (1946) formula: 
(SE2+∆2/DFSD/2)2/(SE4/DF∆+(∆2/DFSD/2)2/DFSD), 
where DF∆ is the degrees of freedom of the SE. 
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